Organizations use data analytics because it uncovers unique insights that can help solve a multitude of problems; anything from improving customer retention to risk management. Not taking the time to set yourself up for success, however, can cause your data analytics project to be rife with headaches. Here are three steps to take for a more successful data analytics project.
Incorporate the Entire Business in the Kick-off Discussions
The planning stage is the most important part of any data analytics project, so you need to make sure you get the right people involved. I’ve seen it time and time again where the IT team tries to handle the project by themselves, but ultimately that leaves entire departments starving for the real data they need. Get several department heads involved, depending on what your business structure looks like, but don’t worry about interpreting all of the data at once. It may take several steps to get everyone’s information represented, so start with one department’s needs to ensure you can feasibly present it before adding in more.
Carefully Consider Your Platform Choice
Choosing the right platform in which to store your data is an important decision and is unique to each organization. How much data do you have? How much do you want to spend? If affordability is an important factor, maybe you can build it on something you already own, such as SQL Server, MySQL or Oracle. If you’re considering this, you’ll want to do a proof of concept so you know whether the platform is feasible, whether it can scale as necessary, or if another platform would be a better choice. Some organizations look at a proof of concept as a waste of time, but it truly isn’t. In vetting your platform choice you’ll have already thought through a lot of what can go wrong along the way. Many companies are eager to buy the latest and greatest technology, but that typically comes with a huge learning curve which will slow the process down. There are pros and cons to any platform, so it’s important to dedicate time to your decision.
Standardize Your Reporting
With multiple people and departments involved on a data analytics project, you’ll want to make sure that you standardize your reporting ahead of time to avoid confusion. Creating some sort of standard view, stored procedure or code that everybody uses when they’re reporting on the project will help immensely. For example, let’s say that someone asks to see sales for the month of April, but the business rule states that a sale only counts if the bill is paid in full. Not consistently incorporating this business rule will cause confusion and inaccurate reporting. Having an organizational data dictionary which explains these standardizations through examples can help to reduce confusion and surface any gaps.
If you’re eager to make use of the vast amount of data within your organization, consider these tips to avoid the aggravations that can occur on a data analytics project. By taking the time to think proactively about the most important aspects of the project, you’ll be able to deliver an end result that will provide powerful insights about your business.
About the Author:
Karen Murphy is a Senior Consultant based in our Fort Wayne Development Center. She’s been working in technology for 25 years, having served in various roles and industries including financial services, transportation, manufacturing and healthcare. When she’s not working, Karen enjoys cycling, softball and the great outdoors.

Snowflake Summit 2025 Announcements
Snowflake Summit 2025’s latest announcements made it clear: the path to genuine AI-driven impact hinges on frictionless access to data, the ability to act on it with clarity, and absolute confidence in its protection. Learn more about how they're making that happen for customers in this article.

How ChatPRD Helps Build Better Stories (and a Stronger Team)
When user stories are vague, it slows down delivery, trust, and momentum. This article by Senior Product Strategy Consultant Traci Metzger shows how she used a lightweight, AI-guided system (ChatPRD) to write clearer, developer-ready requirements that actually accelerated execution.

QA in the Age of AI: The Rise of AI-Powered Quality Intelligence
As organizations push code to production faster, respond rapidly to new customer needs and build adaptive systems, the expectations on quality have changed. It's no longer enough to simply catch bugs at the end of the cycle. We’re entering an era where quality engineering must evolve into quality intelligence and organizations adopting quality intelligence practices are reporting measurable gains across key delivery metrics. Learn more in this article by Principal Engineer Jarius Hayes.

Operational Efficiency in the AI Era: What Matters and What Works
Ever wonder how leading teams are cutting costs without cutting corners? Hint: it starts with AI. In this article by Principal Delivery Manager Kabir Chugh, learn how AI is powering smarter ops, faster deployments, and measurable savings across industries.